caMicroscope Documentation
Release latest

Apr 11, 2019

Contents

1 nanoBorb 3
2 Hosted Setup 5
2.1 SSL . o e e e 5
2.2 Component SETVICES . . v v v v v v v e 5
2.3 Configuration oL e e e e e e e e e e e e e e e e 6
24 Security e e e e 6
2.5 PathDB 7
3 Developer Guide 9

caMicroscope Documentation, Release latest

caMicroscope is a tool to is a HTMLS image viewer optimized for large bio-medical image data viewing, with a strong
emphasis on cancer pathology. This guide has sections for different kinds of use of the platform. “User Guide” covers
the basics on how to use caMicroscope viewer. “Nanoborb” covers nanoBorb, the version of caMicroscope designed
as a standalone application for individual users without a server. “Hosted Setup” covers how to set up caMicroscope
for multiple users on a server. “Developer Guide” covers the broad strokes on how to add new functionality to
caMicroscope.

UNDER CONSTRUCTION

Contents 1

caMicroscope Documentation, Release latest

2 Contents

CHAPTER 1

nanoBorb

To use caMicroscope as a standalone application, see nanoborb. The user guide screencast should explain the basics
of Nanoborb.

Installation Instructions
Windows - 1) Download zip file. 2) Unzip. 3) Run “nanoborb.exe” in the unzipped folder

MacOS - 1) Download zip file. 2) Unzip. 3) Move Nanoborb app to Applications folder. 4) Double-click copied
Nanoborb file to run.

https://github.com/SBU-BMI/Nanoborb/releases
https://drive.google.com/open?id=1HkkL5FqEIgi7fzqKijtUhWBPlplh_uHF

caMicroscope Documentation, Release latest

4 Chapter 1. nanoBorb

CHAPTER 2

Hosted Setup

The full distribution repository for hosted caMicroscope is here. run with docker-compose -f
caMicroscope.yml up

this will build all services and run in the foreground. Use docker—compose —-f caMicroscope.yml build
to rebuild the services.

Once everything is up, go to :4010/ to see the landing page.

2.1 SSL

To enable ssl, mount the private key and certificate files to elevate in /root/src/ssl/privatekey.pem and
/root/src/ssl/certificate.pem respectively. HTTPS mode will only be enabled if both of these files are present.

2.2 Component Services

mongo - vanilla mongo container

idxMongo - ephemeral container to index mongo (that is, this container is expected to exit once it’s done its job)
bindaas - api service for mongo (see https://github.com/sharmalab/bindaas)

iip - slide tile server (see https://github.com/camicroscope/iipImage)

viewer - hosts the viewer files and builds packages (see https://github.com/camicroscope/caMicroscope)

loader - extracts metadata needed for image loading (see https://github.com/camicroscope/SlideLoader)

elevate - security proxy (see https://github.com/camicroscope/Security)

auth - consumes external JWT and issues caMicroscope JWT (see Security Section)

https://github.com/camicroscope/Distro/
https://github.com/sharmalab/bindaas
https://github.com/camicroscope/iipImage
https://github.com/camicroscope/caMicroscope
https://github.com/camicroscope/SlideLoader
https://github.com/camicroscope/Security

caMicroscope Documentation, Release latest

2.3 Configuration

Logging - Container Logging is, for HIPAA reasons, disabled. Feel free to use a different logging engine if desired,
especially for development.

Routes - This is handled by the elevate service/ca-security container. By default routes go the viewer, unless a specific
pattern in routes.json is matched.

Image Volume - This is, by default, the images directory in this directory. If this is changed, please make the same
change across all impacted services.

Packages - Packages are built in the viewer service using parcel, mount a different directory with packages.js to the
package directory to overwrite or add functionality.

2.4 Security

For standard security, we use a combination of an external identity provider and an internal authorization service. The
authorization service consumes Json Web Tokens (JWTs) from the identity provider, and then will issue JWTs which
convey both authentication and authorization, which are consumed by the application.

2.4.1 Getting an Identity Provider and Setting up Login

There are many identity providers, but for testing and examples, we have been using authO.

When selecting, an identity provider, note that we expect it to provide a JWT, and to have a certificate/public key/secret
which can be used to verify such JWTs.

The example given in the Distro within config/login.html is set up for authQ; simply change the corresponding variables
for your authQ application if authO is used. If using another identity provider, then login.html, or equivalent, needs to,
at least, set the JWT to a cookie called “token”, and call the auth service’s ‘check’ route, and save a successful result
as the token. Follow the guide which your identity provider uses for further guidance.

2.4.2 Keys/Certificates

Add the following files; by default, they are mounted:

o —/jwt_keys/certificate or ./jwt_keys/jwk.json is the certificate/public key/secret or jwk (respectively) from the
identity provider. (If both are included, the jwk takes precedence).

o —/jwt_keys/key and ./jwt_keys/key.pub are used as the signing and check keys for the auth service

¢ —These can (and should) be generated with ./kwt_keys/make_keys.sh

2.4.3 Deployment Configuration

Turn off disable security under the elevate service to block routes.

2.4.4 Adding Users to Database

Add users as in ./config/add_mongo_users.js. Attributes can be added to deny access to routes (e.g. allow only some
users to post and delete)

The name field is the email field (or failing that, sub field) in that priority from the identity provider.

6 Chapter 2. Hosted Setup

caMicroscope Documentation, Release latest

2.5 PathDB

To use pathdb, use pathDbCamic.yml instead of caMicroscope.yml, and replace routes.json with pathdb_routes.json.
This deployment does not include the auth and loader as separate services, as this PathDB provides that functionality.

2.5. PathDB 7

caMicroscope Documentation, Release latest

8 Chapter 2. Hosted Setup

CHAPTER 3

Developer Guide

We are collecting feedback to write this section in more detail. Please give any feedback to this form.

caMicroscope is designed to be extended. Depending on the manner of extension, it may be a package or a new
application. It is highly recommended to use a minimal methods of extension to avoid code duplication and issues with
future upgrade compatibility. Changing Package on default viewer The viewer container builds package/package.js
on build, and the resulting file is included in the viewer. This is used to add small custom functionality tweaks to the
viewer. Adding more applications alongside the default viewer For more substantial modifications, it may make more
sense to make a new application. These can be mounted somewhere (preferably somewhere in the apps folder) in the
viewer service, and would include modification of the toolbar, or implementation of an entirely new functionality

caMicroscope is open source software. Any involvement and contribution with the caMicroscope project is greatly
appreciated. Feel free to get directly involved in any of the repositories in the caMicroscope organization. The
caMicroscope project has persistent branches for development and release. It is highly recommended to make any
changes off of the develop branch of a repository, and, when ready, create a PR to the develop branch of the source
repository. The creation of additional specializations, packages, or applications should, in most cases, live as a separate
repository.

https://docs.google.com/forms/d/e/1FAIpQLScL91LxrpAZjU88GBZP9gmcdgdf8__uNUwhws2lzU6Lr4qNwA/viewform

	nanoBorb
	Hosted Setup
	SSL
	Component Services
	Configuration
	Security
	PathDB

	Developer Guide

